Hydrologic Variability Affects Invertebrate Grazing on Phototrophic Biofilms in Stream Microcosms

نویسندگان

  • Serena Ceola
  • Iris Hödl
  • Martina Adlboller
  • Gabriel Singer
  • Enrico Bertuzzo
  • Lorenzo Mari
  • Gianluca Botter
  • Johann Waringer
  • Tom J. Battin
  • Andrea Rinaldo
چکیده

The temporal variability of streamflow is known to be a key feature structuring and controlling fluvial ecological communities and ecosystem processes. Although alterations of streamflow regime due to habitat fragmentation or other anthropogenic factors are ubiquitous, a quantitative understanding of their implications on ecosystem structure and function is far from complete. Here, by experimenting with two contrasting flow regimes in stream microcosms, we provide a novel mechanistic explanation for how fluctuating flow regimes may affect grazing of phototrophic biofilms (i.e., periphyton) by an invertebrate species (Ecdyonurus sp.). In both flow regimes light availability was manipulated as a control on autotroph biofilm productivity and grazer activity, thereby allowing the test of flow regime effects across various ratios of biofilm biomass to grazing activity. Average grazing rates were significantly enhanced under variable flow conditions and this effect was highest at intermediate light availability. Our results suggest that stochastic flow regimes, characterised by suitable fluctuations and temporal persistence, may offer increased windows of opportunity for grazing under favourable shear stress conditions. This bears important implications for the development of comprehensive schemes for water resources management and for the understanding of trophic carbon transfer in stream food webs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mass-spring model unveils the morphogenesis of phototrophic Diatoma biofilms

Diatoms often dominate planktonic communities in the ocean and phototrophic biofilms in streams and rivers, greatly contributing to global biogeochemical fluxes. In pelagic ecosystems, these microscopic algae can form chain-like microcolonies, which seem advantageous for nutrient uptake and protect against grazing, and at the same time reduce sinking. Despite the capability of many diatoms to f...

متن کامل

Light availability affects stream biofilm bacterial community composition and function, but not diversity

Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5-152 μmole photons s(-1)  m(-2) ) and combined 454-pyrosequencing and enzymatic activity assays to evaluate the effects of...

متن کامل

An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport

[1] Hydrologic processes control much of the export of organic matter and nutrients from the land surface. It is the variability of these hydrologic processes that produces variable patterns of nutrient transport in both space and time. In this paper, we explore how hydrologic ‘‘connectivity’’ potentially affects nutrient transport. Hydrologic connectivity is defined as the condition by which d...

متن کامل

Hyporheic invertebrates affect N cycling and respiration in stream sediment microcosms

The region of surface water–groundwater interaction in streams, the hyporheic zone, is important for biogeochemical processes and provides habitat for specialized microbial and invertebrate assemblages. Although hyporheic invertebrates contribute little biomass and respiration relative to microbes in stream sediments, invertebrate effects on biogeochemical processes may be disproportionately la...

متن کامل

Hydrologic Response of Grasslands: Effects of Grazing, Interactive Infiltration, and Scale

Data collected at two measurement scales from a semiarid grassland are presented and analyzed to explore the hydrologic effects of grazing, interactions between overland flow and infiltration, and scale issues. Rainfall-runoff simulations were used to quantify the areal ~3 by 10 m plot scale! response, and small-diameter ~9 cm! disk infiltrometers were used to estimate point-scale hydraulic con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013